Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.835
1.
J Mol Biol ; 436(10): 168575, 2024 May 15.
Article En | MEDLINE | ID: mdl-38641238

DNA mismatch repair endonuclease MutL is a member of GHKL ATPase superfamily. Mutations of MutL homologs are causative of a hereditary cancer, Lynch syndrome. We characterized MutL homologs from human and a hyperthermophile, Aquifex aeolicus, (aqMutL) to reveal the catalytic mechanism for the ATPase activity. Although involvement of a basic residue had not been conceived in the catalytic mechanism, analysis of the pH dependence of the aqMutL ATPase activity revealed that the reaction is catalyzed by a residue with an alkaline pKa. Analyses of mutant aqMutLs showed that Lys79 is the catalytic residue, and the corresponding residues were confirmed to be critical for activities of human MutL homologs, on the basis of which a catalytic mechanism for MutL ATPase is proposed. These and other results described here would contribute to evaluating the pathogenicity of Lynch syndrome-associated missense mutations. Furthermore, it was confirmed that the catalytic lysine residue is conserved among DNA gyrases and microrchidia ATPases, other members of GHKL ATPases, indicating that the catalytic mechanism proposed here is applicable to these members of the superfamily.


Adenosine Triphosphatases , Lysine , Lysine/metabolism , Lysine/genetics , Humans , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , MutL Proteins/genetics , MutL Proteins/metabolism , MutL Proteins/chemistry , Catalytic Domain , Amino Acid Sequence , Conserved Sequence , Hydrogen-Ion Concentration , Catalysis , Transcription Factors
2.
Wiley Interdiscip Rev RNA ; 15(2): e1848, 2024.
Article En | MEDLINE | ID: mdl-38605483

Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.


Histones , RNA , Animals , Histones/genetics , Histones/metabolism , Histone Code , DNA Transposable Elements , Lysine/genetics
3.
J Virol ; 98(4): e0197223, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38470155

The coordinated packaging of the segmented genome of the influenza A virus (IAV) into virions is an essential step of the viral life cycle. This process is controlled by the interaction of packaging signals present in all eight viral RNA (vRNA) segments and the viral nucleoprotein (NP), which binds vRNA via a positively charged binding groove. However, mechanistic models of how the packaging signals and NP work together to coordinate genome packaging are missing. Here, we studied genome packaging in influenza A/SC35M virus mutants that carry mutated packaging signals as well as specific amino acid substitutions at the highly conserved lysine (K) residues 184 and 229 in the RNA-binding groove of NP. Because these lysines are acetylated and thus neutrally charged in infected host cells, we replaced them with glutamine to mimic the acetylated, neutrally charged state or arginine to mimic the non-acetylated, positively charged state. Our analysis shows that the coordinated packaging of eight vRNAs is influenced by (i) the charge state of the replacing amino acid and (ii) its location within the RNA-binding groove. Accordingly, we propose that lysine acetylation induces different charge states within the RNA-binding groove of NP, thereby supporting the activity of specific packaging signals during coordinated genome packaging. IMPORTANCE: Influenza A viruses (IAVs) have a segmented viral RNA (vRNA) genome encapsidated by multiple copies of the viral nucleoprotein (NP) and organized into eight distinct viral ribonucleoprotein complexes. Although genome segmentation contributes significantly to viral evolution and adaptation, it requires a highly sophisticated genome-packaging mechanism. How eight distinct genome complexes are incorporated into the virion is poorly understood, but previous research suggests an essential role for both vRNA packaging signals and highly conserved NP amino acids. By demonstrating that the packaging process is controlled by charge-dependent interactions of highly conserved lysine residues in NP and vRNA packaging signals, our study provides new insights into the sophisticated packaging mechanism of IAVs.


Influenza A virus , Nucleocapsid Proteins , Viral Genome Packaging , Animals , Dogs , Humans , Amino Acid Substitution , Cell Line , Genome, Viral , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza A virus/metabolism , Lysine/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , Viral Genome Packaging/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism , Mutation , Static Electricity
4.
Curr Biol ; 34(6): 1295-1308.e5, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38452759

Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.


Chromatids , Lysine , Separase/metabolism , Securin/genetics , Securin/metabolism , Chromatids/metabolism , Acetylation , Lysine/genetics , Lysine/metabolism , Cell Cycle Proteins/metabolism , Anaphase , Endopeptidases , Chromosome Segregation
5.
J Cancer Res Ther ; 20(1): 52-56, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38554298

BACKGROUND: Despite the growing advances in molecular research and therapeutics, glioblastomas are still considered highly invasive aggressive tumors with a median survival of 15 months. Genetic alterations have been studied in detail; however, additionally, there is now growing evidence on the role of epigenetic alterations in glioblastoma. Recently, histone modification patterns have been found to have a significant part in gene expression and prognosis. However, further research in this field is warranted to establish its role for the betterment of these patients with the deadly disease. AIMS: To determine the immunohistochemical expression of histone modifications like histone-3-lysine-18 acetylation (H3K18Ac) and histone-4-lysine 20 trimethylation (H4K20triMe) in glioblastoma patients. MATERIALS AND METHODS: This is a retrospective study of 48 glioblastoma patients who underwent surgery. Immunohistochemistry (IHC) for tri-methyl-histone-H4 (Lys20) (H4K20triMe) and acetyl-histone-H3 (Lys18) (H3K18Ac) was performed in paraffin-embedded tissues manually, and the expression was noted. Data on the mitotic index and overall survival was collected and statistically analyzed. RESULTS: The mean age was 50 years with a M: F ratio of 1.6:1. Out of 48 cases, 60% (28 cases) demonstrated positivity for H3K18Ac and 98% (46 cases) for H4K20triMe. The pattern of expression was nuclear with increased expression adjacent to necrosis and at the invasive front. The overall median Q score for H3K18Ac was 1/12 and for H4K20triMe was 6/12. No significant statistical significance was observed between histone expression, Ki67%, and overall survival. CONCLUSION: Histone modification patterns are being explored in detail in an array of tumors. They also have a potential role in glioblastoma for risk stratification and instituting appropriate treatment based on the prognosis. Epigenetic changes like histone modification patterns, in addition to genetics, can pave the way for a better molecular understanding of glioblastomas and provide hope in the future to improve the survival of these patients with deadly diseases.


Glioblastoma , Histones , Adult , Humans , Middle Aged , Histones/genetics , Glioblastoma/genetics , Histone Code , Lysine/genetics , Lysine/metabolism , Retrospective Studies , Acetylation
6.
Funct Plant Biol ; 512024 Feb.
Article En | MEDLINE | ID: mdl-38326234

Sweet corn is one of the most popular vegetables worldwide. However, traditional shrunken2 (sh2 )-based sweet corn varieties are poor in nutritional quality. Here, we analysed the effect of (1) ß-carotene hydroxylase1 (crtRB1 ), (2) opaque2 (o2 ) and (3) o2+crtRB1 genes on nutritional quality, germination, seed vigour and physico-biochemical traits in a set of 27 biofortified sh2 -based sweet corn inbreds. The biofortified sweet corn inbreds recorded significantly higher concentrations of proA (16.47µg g-1 ), lysine (0.36%) and tryptophan (0.09%) over original inbreds (proA: 3.14µg g-1 , lysine: 0.18%, tryptophan: 0.04%). The crtRB1 -based inbreds had the lowest electrical conductivity (EC), whereas o2 -based inbreds possessed the highest EC. The o2 +crtRB1 -based inbreds showed similar EC to the original inbreds. Interestingly, o2 -based inbreds also had the lowest germination and seed vigour compared to original inbreds, whereas crtRB1 and o2 +crtRB1 introgressed sweet corn inbreds showed similar germination and seed vigour traits to their original versions. This suggested that the negative effect of o2 on germination, seed vigour and EC is nullified by crtRB1 in the double mutant sweet corn. Overall, o2 +crtRB1 -based sweet corn inbreds were found the most desirable over crtRB1 - and o2 -based inbreds alone.


Germination , Zea mays , Zea mays/genetics , Vegetables , Lysine/genetics , Lysine/pharmacology , Tryptophan/genetics , Tryptophan/pharmacology , Seeds/genetics , Genotype
7.
J Biol Chem ; 300(3): 105682, 2024 Mar.
Article En | MEDLINE | ID: mdl-38272233

Cyclotides are plant-derived disulfide-rich cyclic peptides that have a natural function in plant defense and potential for use as agricultural pesticides. Because of their highly constrained topology, they are highly resistant to thermal, chemical, or enzymatic degradation. However, the stability of cyclotides at alkaline pH for incubation times of longer than a few days is poorly studied but important since these conditions could be encountered in the environment, during storage or field application as insecticides. In this study, kalata B1 (kB1), the prototypical cyclotide, was engineered to improve its long-term stability and retain its insecticidal activity via point mutations. We found that substituting either Asn29 or Gly1 to lysine or leucine increased the stability of kB1 by twofold when incubated in an alkaline buffer (pH = 9.0) for 7 days, while retaining its insecticidal activity. In addition, when Gly1 was replaced with lysine or leucine, the mutants could be cyclized using an asparaginyl endopeptidase, in vitro with a yield of ∼90% within 5 min. These results demonstrate the potential to manufacture kB1 mutants with increased stability and insecticidal activity recombinantly or in planta. Overall, the discovery of mutants of kB1 that have enhanced stability could be useful in leading to longer term activity in the field as bioinsecticides.


Cyclotides , Insecticides , Oldenlandia , Cyclotides/genetics , Cyclotides/pharmacology , Cyclotides/chemistry , Insecticides/chemistry , Insecticides/pharmacology , Leucine , Lysine/genetics , Mutagenesis , Plant Proteins/metabolism , Oldenlandia/chemistry , Protein Stability , Animals , Cell Line , Cell Survival/drug effects
8.
Curr Opin Genet Dev ; 84: 102153, 2024 Feb.
Article En | MEDLINE | ID: mdl-38278054

Methylation of histone H3 on the lysine-4 residue (H3K4me) is found throughout the eukaryotic domain, and its initial discovery as a conserved epigenetic mark of active transcription from yeast to mammalian cells has contributed to the histone code hypothesis. However, recent studies have raised questions on whether the different forms of H3K4me play a direct role in gene regulation or are simply by-products of the transcription process. Here, we review the often-conflicting experimental evidence, focusing on the monomethylation of lysine 4 on histone H3 that has been linked to the transcriptional state of enhancers in metazoans. We suggest that this epigenetic mark acts in a context-dependent manner to directly facilitate the transcriptional output of the genome and the establishment of cellular identity.


Histones , Lysine , Animals , Histones/genetics , Histones/metabolism , Lysine/genetics , Lysine/metabolism , Methylation , Saccharomyces cerevisiae/genetics , Gene Expression Regulation/genetics , Mammals
9.
Mol Med ; 30(1): 9, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38216914

BACKGROUND: Lysine demethylase 5C (KDM5C) has been implicated in the development of several human cancers. This study aims to investigate the role of KDM5C in the progression of colorectal cancer (CRC) and explore the associated molecular mechanism. METHODS: Bioinformatics tools were employed to predict the target genes of KDM5C in CRC. The expression levels of KDM5C and prefoldin subunit 5 (PFDN5) in CRC cells were determined by RT-qPCR and western blot assays. The interaction between KDM5C, H3K4me3, and PFDN5 was validated by chromatin immunoprecipitation. Expression and prognostic values of KDM5C and PFDN5 in CRC were analyzed in a cohort of 72 patients. The function of KDM5C/PFDN5 in c-Myc signal transduction was analyzed by luciferase assay. Silencing of KDM5C and PFDN5 was induced in CRC cell lines to analyze the cell malignant phenotype in vitro and tumorigenic activity in nude mice. RESULTS: KDM5C exhibited high expression, while PFDN5 displayed low expression in CRC cells and clinical CRC samples. High KDM5C levels correlated with poor survival and unfavorable clinical presentation, whereas elevated PFDN5 correlated with improved patient outcomes. KDM5C mediated demethylation of H3K4me3 on the PFDN5 promoter, suppressing its transcription and thereby enhancing the transcriptional activity of c-Myc. KDM5C knockdown in CRC cells suppressed cell proliferation, migration and invasion, epithelial-mesenchymal transition, and tumorigenic activity while increasing autophagy and apoptosis rates. However, the malignant behavior of cells was restored by the further silencing of PFDN5. CONCLUSION: This study demonstrates that KDM5C inhibits PFDN5 transcription, thereby activating c-Myc signal transduction and promoting CRC progression.


Colorectal Neoplasms , Lysine , Molecular Chaperones , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Lysine/genetics , Lysine/metabolism , Mice, Nude , Neoplastic Processes , Signal Transduction
10.
Metab Eng ; 81: 227-237, 2024 Jan.
Article En | MEDLINE | ID: mdl-38072357

5-Aminovaleric acid (5-AVA), 5-hydroxyvalerate (5HV), copolymer P(3HB-co-5HV) of 3-hydroxybutyrate (3HB) and 5HV were produced from L-lysine as a substrate by recombinant Halomonas bluephagenesis constructed based on codon optimization, deletions of competitive pathway and L-lysine export protein, and three copies of davBA genes encoding L-lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) inserted into its genome to form H. bluephagenesis YF117ΔgabT1+2, which produced 16.4 g L-1 and 67.4 g L-1 5-AVA in flask cultures and in 7 L bioreactor, respectively. It was able to de novo synthesize 5-AVA from glucose by L-lysine-overproducing H. bluephagenesis TD226. Corn steep liquor was used instead of yeast extract for cost reduction during the 5-AVA production. Using promoter engineering based on Pporin mutant library for downstream genes, H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC produced 6 g L-1 5HV in shake flask growth, while H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC-Pporin278-phaCRE-abfT synthesized 42 wt% P(3HB-co-4.8 mol% 5HV) under the same condition. Thus, H. bluephagenesis was successfully engineered to produce 5-AVA and 5HV in supernatant and intracellular P(3HB-co-5HV) utilizing L-lysine as the substrate.


Halomonas , Metabolic Engineering , Lysine/genetics , Lysine/metabolism , Halomonas/genetics , Halomonas/metabolism , 3-Hydroxybutyric Acid/metabolism , Polyesters/metabolism , Porins/genetics , Porins/metabolism
11.
J Gene Med ; 26(1): e3589, 2024 Jan.
Article En | MEDLINE | ID: mdl-37649129

BACKGROUND: Human male infertility has a lot of known molecular components that have an accurate diagnosis, such as Y chromosome deletion and monogenic causes. Only 4% of all infertile males are diagnosed with genetic causes, while 60-70% of infertile men remain without an accurate diagnosis and are classified as unexplained. Oligospermia is a major cause of human male infertility. Its etiology and pathogenesis are linked to genetic abnormalities. The majority of genetic causes related to human male infertility remain unclear. RESULTS: Generally, we found a significant association between the specific type of disease and gender (p = 0.003), and the regression value (R2 ) for this association was 0.75. Association of the type of disease with body mass index was not significant (p = 0.34). There was no statistically significant difference (p = 0.40) among disease types with patients occupations. All explored mutations are listed for primary and secondary infertility in relation to the oligospermia condition. p.Arg286X is the outcome of a mismatch mutation in which the nucleotide change resulted in the substitution of Arg (arginine) amino acid with X (any amino acid) at position 286 in the Hyal3 gene of primary infertile patients having oligospermia. In primary infertile patients with the p.Arg286X mutation, a frameshift deletion mutation was also found just after the 25 nucleotide sequences of the Hyal3 genes of the second mutated exon. This deletion mutation was only detected in patients with primary infertility and was not found in people with secondary infertility or healthy controls. The other mutations in secondary infertile patients with oligospermia were: p.Lys168Ser, replacement of lysine (Lys) with serine (Ser) at position 168; p.Lys168The, replacement of lysine (Lys) with threonine (The) at position 168; p.His113X, substitution of histidine (His) with an unknown amino acid (X) at position 113; p.Pro162X, substitution of proline (Pro) with an unknown amino acid (X) at position 162; and p.Phe157X, phenylalanine (Phe) substitution with an unknown amino acid (X) at position 157. CONCLUSION: This study clarifies the site of novel mismatch and frameshift deletion mutations in the Hyal3 gene in primary infertile oligospermia patients.


Infertility, Male , Oligospermia , Humans , Male , Oligospermia/genetics , Oligospermia/complications , Lysine/genetics , Infertility, Male/genetics , Infertility, Male/diagnosis , Mutation , Chromosome Deletion
12.
J Mol Biol ; 436(7): 168376, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38056822

Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."


Histones , Lysine , Transcription, Genetic , Acetylation , Chromatin/genetics , Chromatin/metabolism , Histones/genetics , Histones/metabolism , Lysine/genetics , Lysine/metabolism , Transcriptional Activation , Protein Domains
13.
Gene Ther ; 31(1-2): 12-18, 2024 Jan.
Article En | MEDLINE | ID: mdl-37985879

Glutaric Aciduria type I (GA1) is a rare neurometabolic disorder caused by mutations in the GDCH gene encoding for glutaryl-CoA dehydrogenase (GCDH) in the catabolic pathway of lysine, hydroxylysine and tryptophan. GCDH deficiency leads to increased concentrations of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body fluids and tissues. These metabolites are the main triggers of brain damage. Mechanistic studies supporting neurotoxicity in mouse models have been conducted. However, the different vulnerability to some stressors between mouse and human brain cells reveals the need to have a reliable human neuronal model to study GA1 pathogenesis. In the present work we generated a GCDH knockout (KO) in the human neuroblastoma cell line SH-SY5Y by CRISPR/Cas9 technology. SH-SY5Y-GCDH KO cells accumulate GA, 3-OHGA, and glutarylcarnitine when exposed to lysine overload. GA or lysine treatment triggered neuronal damage in GCDH deficient cells. SH-SY5Y-GCDH KO cells also displayed features of GA1 pathogenesis such as increased oxidative stress vulnerability. Restoration of the GCDH activity by gene replacement rescued neuronal alterations. Thus, our findings provide a human neuronal cellular model of GA1 to study this disease and show the potential of gene therapy to rescue GCDH deficiency.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Lysine , Neuroblastoma , Humans , Animals , Mice , Lysine/genetics , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Mice, Knockout , Genetic Therapy
14.
Protein Sci ; 33(1): e4845, 2024 Jan.
Article En | MEDLINE | ID: mdl-37996965

Glucokinase (GK) catalyzes the phosphorylation of glucose to form glucose-6-phosphate as the substrate of glycolysis for energy production. Acetylation of lysine residues in Escherichia coli GK has been identified at multiple sites by a series of proteomic studies, but the impact of acetylation on GK functions remains largely unknown. In this study, we applied the genetic code expansion strategy to produce site-specifically acetylated GK variants which naturally exist in cells. Enzyme assays and kinetic analyses showed that lysine acetylation decreases the GK activity, mostly resulting from acetylation of K214 and K216 at the entrance of the active site, which impairs the binding of substrates. We also compared results obtained from the glutamine substitution method and the genetic acetyllysine incorporation approach, showing that glutamine substitution is not always effective for mimicking acetylated lysine. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to determine acetylation and deacetylation mechanisms, which showed that E. coli GK could be acetylated by acetyl-phosphate without enzymes and deacetylated by CobB deacetylase.


Escherichia coli , Lysine , Escherichia coli/metabolism , Lysine/genetics , Glucokinase/genetics , Glucokinase/metabolism , Acetylation , Glutamine/genetics , Glutamine/metabolism , Proteomics , Protein Processing, Post-Translational
15.
PLoS Pathog ; 19(12): e1011873, 2023 Dec.
Article En | MEDLINE | ID: mdl-38113273

As a human tumor virus, EBV is present as a latent infection in its associated malignancies where genetic and epigenetic changes have been shown to impede cellular differentiation and viral reactivation. We reported previously that levels of the Wnt signaling effector, lymphoid enhancer binding factor 1 (LEF1) increased following EBV epithelial infection and an epigenetic reprogramming event was maintained even after loss of the viral genome. Elevated LEF1 levels are also observed in nasopharyngeal carcinoma and Burkitt lymphoma. To determine the role played by LEF1 in the EBV life cycle, we used in silico analysis of EBV type 1 and 2 genomes to identify over 20 Wnt-response elements, which suggests that LEF1 may bind directly to the EBV genome and regulate the viral life cycle. Using CUT&RUN-seq, LEF1 was shown to bind the latent EBV genome at various sites encoding viral lytic products that included the immediate early transactivator BZLF1 and viral primase BSLF1 genes. The LEF1 gene encodes various long and short protein isoforms. siRNA depletion of specific LEF1 isoforms revealed that the alternative-promoter derived isoform with an N-terminal truncation (ΔN LEF1) transcriptionally repressed lytic genes associated with LEF1 binding. In addition, forced expression of the ΔN LEF1 isoform antagonized EBV reactivation. As LEF1 repression requires histone deacetylase activity through either recruitment of or direct intrinsic histone deacetylase activity, siRNA depletion of LEF1 resulted in increased histone 3 lysine 9 and lysine 27 acetylation at LEF1 binding sites and across the EBV genome. Taken together, these results indicate a novel role for LEF1 in maintaining EBV latency and restriction viral reactivation via repressive chromatin remodeling of critical lytic cycle factors.


Epstein-Barr Virus Infections , Virus Latency , Humans , Virus Latency/genetics , Herpesvirus 4, Human/genetics , Virus Activation/genetics , Lysine/genetics , Lymphoid Enhancer-Binding Factor 1/genetics , Epstein-Barr Virus Infections/genetics , Protein Isoforms/genetics , RNA, Small Interfering/genetics , Histone Deacetylases/genetics , Gene Expression Regulation, Viral
16.
Stud Health Technol Inform ; 308: 505-512, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-38007777

Lysine crotonylation (Kcr), as a significant post-translational modification of protein, exists in the core histones and some non histones of many organisms, and plays a crucial regulatory role in many biological processes such as gene expression, cell development, and disease treatment. Due to the high cost, time-consuming and labor-intensive nature of traditional biological experimental methods, it is necessary to develop efficient, low-cost and accurate calculation methods for identifying crotonylation sites. Therefore, we propose a new network model called ARES-Kcr, which extracts three types of features from different perspectives and integrates convolutional modules, attention mechanisms, and residual modules for feature fusion to improve prediction ability in this paper. Our model performs significantly better than other models on the benchmark dataset, with an average AUC of 92% in the independent test set, demonstrating its excellent predictive ability.


Histones , Lysine , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Histones/chemistry , Histones/genetics , Histones/metabolism , Protein Processing, Post-Translational , Cell Differentiation , Computational Biology
17.
Mol Cell ; 83(24): 4614-4632.e6, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37995688

CRISPR screens have empowered the high-throughput dissection of gene functions; however, more explicit genetic elements, such as codons of amino acids, require thorough interrogation. Here, we establish a CRISPR strategy for unbiasedly probing functional amino acid residues at the genome scale. By coupling adenine base editors and barcoded sgRNAs, we target 215,689 out of 611,267 (35%) lysine codons, involving 85% of the total protein-coding genes. We identify 1,572 lysine codons whose mutations perturb human cell fitness, with many of them implicated in cancer. These codons are then mirrored to gene knockout screen data to provide functional insights into the role of lysine residues in cellular fitness. Mining these data, we uncover a CUL3-centric regulatory network in which lysine residues of CUL3 CRL complex proteins control cell fitness by specifying protein-protein interactions. Our study offers a general strategy for interrogating genetic elements and provides functional insights into the human proteome.


Lysine , Proteome , Humans , Proteome/genetics , Lysine/genetics , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems , Codon
18.
J Am Chem Soc ; 145(43): 23702-23714, 2023 11 01.
Article En | MEDLINE | ID: mdl-37856159

Radical cations (holes) produced in DNA by ionizing radiation and other oxidants yield DNA-protein cross-links (DPCs). Detailed studies of DPC formation in chromatin via this process are lacking. We describe here a comprehensive examination of DPC formation within nucleosome core particles (NCPs), which are the monomeric component of chromatin. DNA holes are introduced at defined sites within NCPs that are constructed from the bottom-up. DPCs form at DNA holes in yields comparable to those of alkali-labile DNA lesions that result from water trapping. DPC-forming efficiency and site preference within the NCP are dependent on translational and rotational positioning. Mass spectrometry and the use of mutant histones reveal that lysine residues in histone N-terminal tails and amino termini are responsible for the DPC formation. These studies are corroborated by computational simulation at the microsecond time scale, showing a wide range of interactions that can precede DPC formation. Three consecutive dGs, which are pervasive in the human genome, including G-quadruplex-forming sequences, are sufficient to produce DPCs that could impact gene expression.


Histones , Nucleosomes , Humans , Histones/chemistry , DNA/chemistry , Chromatin , Lysine/genetics
19.
BMC Med Genomics ; 16(1): 247, 2023 10 16.
Article En | MEDLINE | ID: mdl-37845672

BACKGROUND: Post-translational modifications (PTMs) are considered to be an important factor in the pathogenesis of Systemic lupus erythematosus (SLE). Lysine 2-hydroxyisobutyryl (Khib), as an emerging post-translational modification of proteins, is involved in some important biological metabolic activities. However, there are poor studies on its correlation with diseases, especially SLE. OBJECTIVE: We performed quantitative, comparative, and bioinformatic analysis of Khib proteins in Peripheral blood mononuclear cells (PBMCs) of SLE patients and PBMCs of healthy controls. Searching for pathways related to SLE disease progression and exploring the role of Khib in SLE. METHODS: Khib levels in SLE patients and healthy controls were compared based on liquid chromatography tandem mass spectrometry, then proteomic analysis was conducted. RESULTS: Compared with healthy controls, Khib in SLE patients was up-regulated at 865 sites of 416 proteins and down-regulated at 630 sites of 349 proteins. The site abundance, distribution and function of Khib protein were investigated further. Bioinformatics analysis showed that Complement and coagulation cascades and Platelet activation in immune-related pathways were significantly enriched, suggesting that differentially modified proteins among them may affect SLE. CONCLUSION: Khib in PBMCs of SLE patients was significantly up- or down-regulated compared with healthy controls. Khib modification of key proteins in the Complement and coagulation cascades and Platelet activation pathways affects platelet activation and aggregation, coagulation functions in SLE patients. This result provides a new direction for the possible significance of Khib in the pathogenesis of SLE patients.


Lupus Erythematosus, Systemic , Lysine , Humans , Lysine/genetics , Lysine/metabolism , Proteomics , Leukocytes, Mononuclear/metabolism , Protein Processing, Post-Translational , Complement System Proteins/metabolism , Platelet Activation
20.
J Neurol Sci ; 454: 120828, 2023 11 15.
Article En | MEDLINE | ID: mdl-37865002

Ataxin-3 (Atxn3) is a deubiquitinase with a polyglutamine (polyQ) repeat tract whose abnormal expansion causes the neurodegenerative disease, Spinocerebellar Ataxia Type 3 (SCA3; also known as Machado-Joseph Disease). The ubiquitin chain cleavage properties of Atxn3 are enhanced when the enzyme is itself ubiquitinated at lysine (K) at position 117: in vitro, K117-ubiqutinated Atxn3 cleaves poly-ubiquitin markedly more rapidly compared to its unmodified counterpart. How polyQ expansion causes SCA3 remains unclear. To gather insights into the biology of disease of SCA3, here we posited the question: is K117 important for toxicity caused by pathogenic Atxn3? To answer this question, we generated transgenic Drosophila lines that express full-length, human, pathogenic Atxn3 with 80 polyQ with an intact or mutated K117. We found that mutating K117 mildly enhances the toxicity and aggregation of pathogenic Atxn3. An additional transgenic line that expresses Atxn3 without any K residues confirms increased aggregation of pathogenic Atxn3 whose ubiquitination is perturbed. These findings suggest that Atxn3 ubiquitination is a regulatory step of SCA3, in part by modulating its aggregation.


Machado-Joseph Disease , Neurodegenerative Diseases , Animals , Humans , Machado-Joseph Disease/genetics , Ataxin-3/genetics , Drosophila , Lysine/genetics , Ubiquitin
...